Monday, 6 November 2017

Weighted Moving Average Excel Formula


Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Berechnen des gleitenden Durchschnitts in Excel In diesem kurzen Tutorial erfahren Sie, wie Sie schnell einen einfachen gleitenden Durchschnitt in Excel berechnen können, welche Funktionen verwendet werden, um einen gleitenden Durchschnitt zu erhalten Die letzten N Tage, Wochen, Monate oder Jahre, und wie man eine gleitende durchschnittliche Trendlinie zu einem Excel-Diagramm hinzufügen. In ein paar neuere Artikel haben wir einen genauen Blick auf das Berechnen des Durchschnitts in Excel genommen. Wenn Sie unseren Blog verfolgt haben, wissen Sie bereits, wie Sie einen normalen Durchschnitt berechnen und welche Funktionen verwenden, um einen gewichteten Durchschnitt zu finden. In der heutigen Tutorial, werden wir diskutieren zwei grundlegende Techniken, um gleitende Durchschnitt in Excel zu berechnen. Was ist gleitender Durchschnitt Generell kann der gleitende Durchschnitt (auch als gleitender Durchschnitt, laufender Durchschnitt oder beweglicher Mittelwert) als eine Reihe von Durchschnittswerten für verschiedene Teilmengen desselben Datensatzes definiert werden. Es wird häufig in der Statistik verwendet, saisonbereinigte Wirtschafts-und Wettervorhersage zugrunde liegenden Trends zu verstehen. Im Aktienhandel ist der gleitende Durchschnitt ein Indikator, der den Durchschnittswert eines Wertpapiers über einen bestimmten Zeitraum darstellt. Im Geschäft, seine eine gängige Praxis, um einen gleitenden Durchschnitt der Verkäufe für die letzten 3 Monate zu berechnen, um den letzten Trend zu bestimmen. Zum Beispiel kann der gleitende Durchschnitt der dreimonatigen Temperaturen berechnet werden, indem man den Durchschnitt der Temperaturen von Januar bis März, dann den Durchschnitt der Temperaturen von Februar bis April, dann von März bis Mai und so weiter. Es gibt verschiedene Arten von gleitenden Durchschnitt wie einfache (auch als Arithmetik), exponentiell, variabel, dreieckig und gewichtet. In diesem Tutorial werden wir in den am häufigsten verwendeten einfachen gleitenden Durchschnitt suchen. Berechnen einfachen gleitenden Durchschnitt in Excel Insgesamt gibt es zwei Möglichkeiten, um einen einfachen gleitenden Durchschnitt in Excel - mit Formeln und trendline Optionen. Die folgenden Beispiele zeigen beide Techniken. Beispiel 1. Gleitender Durchschnitt für einen bestimmten Zeitraum berechnen Ein einfacher gleitender Durchschnitt kann mit der Funktion AVERAGE im Handumdrehen berechnet werden. Angenommen, Sie haben eine Liste der durchschnittlichen monatlichen Temperaturen in Spalte B, und Sie möchten einen gleitenden Durchschnitt für 3 Monate zu finden (wie in der Abbildung oben). Schreiben Sie eine übliche AVERAGE-Formel für die ersten 3 Werte und geben Sie sie in die Zeile ein, die dem dritten Wert von oben entspricht (Zelle C4 in diesem Beispiel), und kopieren Sie die Formel dann auf andere Zellen in der Spalte: Sie können die Spalte mit einer absoluten Referenz (wie B2), wenn Sie möchten, aber achten Sie darauf, relative Zeilenreferenzen (ohne das Zeichen) zu verwenden, so dass die Formel richtig für andere Zellen passt. Daran erinnernd, dass ein Mittelwert berechnet wird, Werte durch Addition und dann durch die Anzahl der Werte, die die Summe dividiert gemittelt werden, können Sie das Ergebnis überprüfen, indem Sie die SUM Formel: Beispiel 2. Erhalten Durchschnitt für eine der letzten Tage Wochen Monate Jahre bewegen N In einer Spalte Angenommen, Sie haben eine Liste von Daten, zB Verkauf Zahlen oder Aktienkurse, und Sie wollen wissen, den Durchschnitt der letzten 3 Monate zu einem beliebigen Zeitpunkt. Dazu benötigen Sie eine Formel, die den Durchschnitt neu berechnen wird, sobald Sie einen Wert für den nächsten Monat eingeben. Was Excel-Funktion ist in der Lage, dies zu tun Die gute alte AVERAGE in Kombination mit OFFSET und COUNT. DURCHSCHNITT (OFFSET (erste Zelle COUNT (Gesamtbereich) - N, 0, N, 1)) Dabei ist N die Anzahl der letzten Tage Wochen Monate, die in den Mittelwert einzubeziehen sind. Nicht sicher, wie Sie diese gleitende Durchschnittsformel in Ihren Excel-Arbeitsblättern verwenden Das folgende Beispiel wird die Dinge klarer machen. Angenommen, die Werte zum Mittelwert in Spalte B beginnen in Zeile 2, die Formel wäre wie folgt: Und jetzt wollen wir versuchen zu verstehen, was diese Excel-gleitende durchschnittliche Formel tatsächlich tun. Die COUNT-Funktion COUNT (B2: B100) zählt, wie viele Werte bereits in Spalte B eingegeben sind. Wir zählen in B2, da Zeile 1 der Spaltenkopf ist. Die OFFSET-Funktion nimmt die Zelle B2 (das erste Argument) als Ausgangspunkt an und verschiebt die Zählung (den durch die COUNT-Funktion zurückgegebenen Wert) durch Verschieben von 3 Zeilen nach oben (-3 im zweiten Argument). Als Ergebnis gibt er die Summe der Werte in einem Bereich zurück, der aus 3 Zeilen (3 im 4. Argument) und 1 Spalte (1 im letzten Argument) besteht, was die letzten 3 Monate ist, die wir wollen. Schließlich wird die zurückgegebene Summe an die Funktion AVERAGE übergeben, um den gleitenden Durchschnitt zu berechnen. Spitze. Wenn Sie mit kontinuierlich aktualisierbaren Arbeitsblättern arbeiten, in denen neue Zeilen zukünftig wahrscheinlich hinzugefügt werden sollen, müssen Sie der COUNT-Funktion eine ausreichende Anzahl von Zeilen zur Verfügung stellen, um potenzielle neue Einträge zu berücksichtigen. Es ist kein Problem, wenn Sie mehr Zeilen als tatsächlich benötigt, solange Sie die erste Zelle rechts, die COUNT-Funktion werden alle leeren Zeilen sowieso verwerfen gehören. Wie Sie wahrscheinlich bemerkt haben, enthält die Tabelle in diesem Beispiel Daten für nur 12 Monate, und doch wird der Bereich B2: B100 an COUN geliefert, nur um auf der Speicherseite zu sein :) Beispiel 3. Gleitender Durchschnitt für die letzten N Werte in Eine Zeile Wenn Sie einen gleitenden Durchschnitt für die letzten N Tage, Monate, Jahre usw. in der gleichen Zeile berechnen wollen, können Sie die Offset-Formel auf diese Weise anpassen: Angenommen, B2 ist die erste Zahl in der Zeile und Sie wollen Um die letzten 3 Zahlen im Durchschnitt einzuschließen, nimmt die Formel die folgende Form an: Erstellen eines Excel-gleitenden Durchschnittsdiagramms Wenn Sie bereits ein Diagramm für Ihre Daten erstellt haben, ist das Hinzufügen einer gleitenden durchschnittlichen Trendlinie für dieses Diagramm eine Frage von Sekunden. Dazu verwenden wir die Excel Trendline-Funktion und die detaillierten Schritte folgen unten. Für dieses Beispiel hat Ive ein 2-D Säulendiagramm (Insert tab gt Charts group) für unsere Verkaufsdaten erstellt: Und nun wollen wir den gleitenden Durchschnitt für 3 Monate visualisieren. In Excel 2010 und Excel 2007, gehen Sie zu Layout gt Trendline gt Weitere Trendline-Optionen. Spitze. Wenn Sie die Details wie das gleitende Durchschnittsintervall oder die Namen nicht angeben müssen, können Sie auf Design gt klicken. Diagramm-Element hinzufügen gt Trendline gt Moving Average für das sofortige Ergebnis. Das Format Trendfenster auf der rechten Seite Ihres Arbeitsblatt in Excel 2013 und das entsprechende Dialogfeld wird in Excel 2010 und 2007.To Pop-up verfeinern Sie Ihre Chat öffnen, können Sie die Fill-Amp-Linie oder Registerkarte Effekte einschalten Das Format Trendline-Fenster und spielen mit verschiedenen Optionen wie Linientyp, Farbe, Breite, etc. Für leistungsstarke Datenanalyse, können Sie ein paar gleitende durchschnittliche Trendlinien mit unterschiedlichen Zeitintervallen hinzufügen, um zu sehen, wie der Trend entwickelt. Der folgende Screenshot zeigt die 2 Monate (grün) und 3 Monate (brickrot) gleitenden Durchschnitt Trendlinien: Nun, das ist alles über die Berechnung der gleitenden Durchschnitt in Excel. Das Beispielarbeitsblatt mit den gleitenden Durchschnittsformeln und der Trendlinie ist zum Download verfügbar - Moving Average Kalkulationstabelle. Ich danke Ihnen für das Lesen und freuen uns auf Sie nächste Woche Sie könnten auch interessiert sein an: Ihr Beispiel 3 oben (Get gleitenden Durchschnitt für die letzten N Werte in einer Zeile) arbeitete perfekt für mich, wenn die ganze Zeile Zahlen enthält. Ich tue dies für meine Golf-Liga, wo wir einen 4-Wochen-Rolling-Durchschnitt verwenden. Manchmal fehlen die Golfer also statt einer Punktzahl, werde ich ABS (Text) in die Zelle legen. Ich möchte noch die Formel für die letzten 4 Punkte zu suchen und nicht zählen die ABS entweder im Zähler oder im Nenner. Wie ändere ich die Formel, um dies zu erreichen Ja, ich habe bemerkt, wenn die Zellen leer waren die Berechnungen nicht korrekt waren. In meiner Situation verfolge ich über 52 Wochen. Auch wenn die letzten 52 Wochen enthaltenen Daten, die Berechnung war falsch, wenn jede Zelle vor der 52 Wochen leer war. Im, das versucht, eine Formel herzustellen, um den gleitenden Durchschnitt für 3 Periode zu erhalten, schätzen, wenn Sie pls helfen können. Datum Produktpreis 1.012.016 A 1.00 1012016 B 5.00 1.012.016 C 10.00 1.022.016 A 1.50 1022016 B 6.00 1.022.016 C 11.00 1.032.016 A 2.00 1032016 B 15.00 1.032.016 C 20.00 1.042.016 A 4.00 1042016 B 20.00 1.042.016 C 40.00 1.052.016 A 0.50 1052016 B 3,00 1.052.016 C 5.00 1062016 A 1.00 1062016 B 5.00 1.062.016 C 10.00 1.072.016 A 0.50 1072016 B 4.00 1.072.016 C 20.00 Hallo, ich bin beeindruckt von dem großen Wissen und die präzise und effektive Anweisung, die Sie zur Verfügung stellen. Ich habe auch eine Frage, die ich hoffe, Sie können Ihr Talent mit einer Lösung als gut verleihen. Ich habe eine Spalte A von 50 (wöchentlich) Intervalldaten. Ich habe eine Spalte B daneben mit geplanten Produktion Durchschnitt von Woche, um Ziel von 700 Widgets (70050) abzuschließen. In der nächsten Spalte summiere ich meine bisherigen wöchentlichen Schritten (zB 100) und berechne meine verbleibende Prognose pro verbleibenden Wochen (ex 700-10030) neu. Ich möchte wöchentlich ein Diagramm mit der aktuellen Woche beginnt neu zu zeichnen (nicht der Anfang x-Achse Datum des Diagramms), mit dem summierten Betrag (100), so dass mein Ausgangspunkt der aktuellen Woche plus den verbleibenden avgweek (20) ist, und Ende des linearen Graphen am Ende der Woche 30 und y Punkt von 700. Die Variablen des Identifizierens des korrekten Zellen-Datums in Spalte A und am Ziel 700 mit einer automatischen Aktualisierung von heutigem Datum beenden, ist mir verwechselt. Könnten Sie bitte helfen mit einer Formel (Ive versucht, IF-Logik mit Heute und nur nicht zu lösen.) Vielen Dank Bitte helfen Sie mit der richtigen Formel, um die Summe der Stunden in einem bewegenden 7 Tage Zeitraum berechnet. Beispielsweise. Ich muss wissen, wie viel Überstunden von einem Individuum über eine rollende 7 Tage Zeitraum von den Anfang des Jahres bis zum Ende des Jahres berechnet wird. Der Gesamtbetrag der geleisteten Arbeitsstunden muss für die 7 rollenden Tage aktualisieren, während ich die Überstundenzahl in einer täglichen Basis erhalte. Danke, einen gewichteten gleitenden Durchschnitt in 3 Schritten zu ermitteln Überblick über den gleitenden Durchschnitt Der gleitende Durchschnitt ist eine statistische Technik, die verwendet wird, um kurz zu glätten - Schwankungen in einer Reihe von Daten, um längerfristige Trends oder Zyklen leichter zu erkennen. Der gleitende Durchschnitt wird manchmal als ein rollender Durchschnitt oder ein laufender Durchschnitt bezeichnet. Ein gleitender Durchschnitt ist eine Reihe von Zahlen, die jeweils den Durchschnitt eines Intervalls einer bestimmten Anzahl von vorherigen Perioden darstellen. Je größer das Intervall, desto mehr Glättung erfolgt. Je kleiner das Intervall, desto mehr gleicht der gleitende Durchschnitt den tatsächlichen Datenreihen. Gleitende Mittelwerte führen die folgenden drei Funktionen aus: Glättung der Daten, was bedeutet, die Anpassung der Daten an eine Zeile zu verbessern. Verringerung der Wirkung von temporären Variation und zufälligen Rauschen. Hervorhebung von Ausreißern über oder unter dem Trend. Der gleitende Durchschnitt ist eine der am häufigsten verwendeten statistischen Techniken in der Industrie, um Daten-Trends zu identifizieren. Beispielsweise sehen Verkaufsmanager häufig dreimonatige Bewegungsdurchschnitte von Verkaufsdaten. Der Artikel wird einen zweimonatigen, dreimonatigen und sechsmonatigen einfachen gleitenden Durchschnitt der gleichen Verkaufsdaten vergleichen. Der gleitende Durchschnitt wird sehr häufig in der technischen Analyse von Finanzdaten wie Aktienrenditen und in der Volkswirtschaft verwendet, um Tendenzen in makroökonomischen Zeitreihen wie Beschäftigung zu lokalisieren. Es gibt eine Anzahl von Variationen des gleitenden Durchschnitts. Die am häufigsten verwendeten sind der einfache gleitende Durchschnitt, der gewichtete gleitende Durchschnitt und der exponentielle gleitende Durchschnitt. Die Durchführung jeder dieser Techniken in Excel wird im Detail in separaten Artikeln in diesem Blog behandelt werden. Hier ist ein kurzer Überblick über jede dieser drei Techniken. Einfacher gleitender Durchschnitt Jeder Punkt in einem einfachen gleitenden Durchschnitt ist der Durchschnitt einer bestimmten Anzahl von vorherigen Perioden. Ein Link zu einem anderen Artikel in diesem Blog, der eine detaillierte Erläuterung der Implementierung dieser Technik in Excel bereitstellt, ist wie folgt: Gewichtete Moving Average Points im gewichteten gleitenden Durchschnitt stellen ebenfalls einen Durchschnitt einer bestimmten Anzahl von vorherigen Perioden dar. Der gewichtete gleitende Durchschnitt bezieht sich auf eine unterschiedliche Gewichtung auf bestimmte vorhergehende Perioden, ganz oft werden die jüngeren Perioden größeres Gewicht gegeben. Dieser Blog-Artikel liefert eine ausführliche Erläuterung der Implementierung dieser Technik in Excel. Exponential Moving Average Punkte im exponentiellen gleitenden Durchschnitt stellen auch einen Durchschnitt einer bestimmten Anzahl von vorherigen Perioden dar. Exponentielle Glättung setzt Gewichtungsfaktoren auf frühere Perioden, die exponentiell abnehmen und niemals Null erreichen. Als Ergebnis berücksichtigt die exponentielle Glättung alle vorherigen Perioden anstelle einer bestimmten Anzahl früherer Perioden, die der gewichtete gleitende Durchschnitt aufweist. Eine Verknüpfung zu einem anderen Artikel in diesem Blog, der eine ausführliche Erläuterung der Implementierung dieser Technik in Excel bereitstellt, ist wie folgt: Im folgenden wird der dreistufige Prozess zum Erstellen eines gewichteten gleitenden Durchschnitts von Zeitreihendaten in Excel beschrieben: Schritt 1 8211 Diagramm der ursprünglichen Daten in einem Zeitreihen-Diagramm Das Liniendiagramm ist das am häufigsten verwendete Excel-Diagramm, um Zeitreihen-Daten zu grafisch darstellen. Ein Beispiel für ein solches Excel-Diagramm, das verwendet wird, um 13 Perioden von Verkaufsdaten zu plotten, wird wie folgt gezeigt: Schritt 2 8211 Erstellen des gewichteten gleitenden Mittelwertes mit Formeln in Excel Excel stellt nicht das Mittelwert-Werkzeug im Datenanalyse-Menü zur Verfügung, so dass die Formeln sein müssen Manuell aufgebaut. In diesem Fall wird ein 2-Intervall-gewichteter gleitender Durchschnitt durch Anwenden eines Gewichts von 2 auf die jüngste Periode und eines Gewichts von 1 auf die vorherige Periode erzeugt. Die Formel in Zelle E5 kann bis Zelle E17 kopiert werden. Schritt 3 8211 Hinzufügen der gewichteten gleitenden Durchschnittsreihe zum Diagramm Diese Daten sollten nun dem Diagramm hinzugefügt werden, das die ursprüngliche Zeitlinie der Verkaufsdaten enthält. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Mittelreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Das Diagramm, das die ursprüngliche Datenreihe enthält, und das 2-Intervall-gewichtete gleitende Mittel wird wie folgt dargestellt. Beachten Sie, dass die gleitende mittlere Linie ein wenig glatter ist und die Rohdatenwerte über und unter der Trendlinie deutlich sichtbarer sind. Auch der Gesamttrend ist deutlich sichtbarer. Ein 3-Intervall gleitender Durchschnitt kann erstellt werden und auf dem Diagramm mit fast dem gleichen Verfahren wie folgt platziert werden. Beachten Sie, dass der jüngsten Periode das Gewicht von 3 zugewiesen wird, der Zeitraum vor dem zugewiesen und das Gewicht von 2, und der Zeitraum vor, dem ein Gewicht von 1 zugewiesen wird. Diese Daten sollten nun dem Diagramm hinzugefügt werden, das das Original enthält Zeit-Linie der Verkaufsdaten zusammen mit der 2-Intervall-Serie. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Durchschnittsreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Wie erwartet, tritt ein etwas mehr Glättung mit dem gewichteten 3-Intervall-gleitenden Durchschnitt auf als mit dem gewichteten 2-Intervall-gleitenden Durchschnitt. Zum Vergleich wird ein 6-Intervall gewichteter gleitender Durchschnitt berechnet und dem Diagramm auf die gleiche Weise wie folgt hinzugefügt. Man beachte, daß die zunehmend abnehmenden Gewichte, die als Perioden zugeordnet sind, in der Vergangenheit entfernter werden. Diese Daten sollten nun dem Diagramm hinzugefügt werden, das die ursprüngliche Zeitlinie der Verkaufsdaten zusammen mit der 2- und 3-Intervall-Reihe enthält. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Durchschnittsreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Wie erwartet, ist der 6-Intervall-gewichtete gleitende Durchschnitt signifikant glatter als die gewichteten 2 oder 3-gewichteten gleitenden Mittelwerte. Ein glatterer Graph paßt genau auf eine gerade Linie. Analysieren der Prognosegenauigkeit Die beiden Komponenten der Prognosegenauigkeit sind die folgenden: Prognosevorhersage 8211 Die Tendenz einer Prognose, konstant höher oder niedriger als tatsächliche Werte einer Zeitreihe zu sein. Die Prognosevorspannung ist die Summe aller Fehler, geteilt durch die Anzahl der Perioden, wie folgt: Eine positive Bias gibt eine Tendenz zur Unterprognose an. Eine negative Vorspannung gibt eine Tendenz zur Überprognose an. Bias misst nicht die Genauigkeit, da positiver und negativer Fehler sich gegenseitig aufheben. Prognosefehler 8211 Die Differenz zwischen Istwerten einer Zeitreihe und den prognostizierten Werten der Prognose. Die gebräuchlichsten Maßnahmen des Prognosefehlers sind die folgenden: MAD 8211 Mean Absolute Deviation MAD berechnet den durchschnittlichen Absolutwert des Fehlers und wird mit folgender Formel berechnet: Die Mittelung der Absolutwerte der Fehler eliminiert den Abbruch von positiven und negativen Fehlern. Je kleiner der MAD, desto besser ist das Modell. MSE 8211 Mean Squared Error MSE ist ein beliebtes Maß für den Fehler, der die Abbruchwirkung von positiven und negativen Fehlern beseitigt, indem die Quadrate des Fehlers mit folgender Formel summiert werden: Große Fehlerterme tendieren dazu, MSE zu übertreiben, da die Fehlerterme alle quadriert sind. RMSE (Root Square Mean) reduziert dieses Problem, indem es die Quadratwurzel von MSE nimmt. MAPE 8211 Mittlerer absoluter Prozentfehler MAPE eliminiert auch den Abbrechen von positiven und negativen Fehlern durch Summieren der Absolutwerte der Fehlerterme. MAPE berechnet die Summe der prozentualen Fehlerterme mit folgender Formel: Durch Summieren von prozentualen Fehlertermen kann MAPE verwendet werden, um Prognosemodelle, die unterschiedliche Maßstäbe verwenden, zu vergleichen. Berechnung von Bias, MAD, MSE, RMSE und MAPE in Excel Für die gewichtete Moving Average Bias werden MAD, MSE, RMSE und MAPE in Excel berechnet, um die gewichteten 2-Intervall-, 3-Intervall - und 6-Intervalle zu bewerten Durchschnittliche Prognose in diesem Artikel erhalten und wie folgt dargestellt: Der erste Schritt ist die Berechnung von E t. E t 2. E t, E t Y t-act. Und dann die Summe dann wie folgt berechnet werden: Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Es werden nun dieselben Berechnungen durchgeführt, um Bias, MAD, MSE, MAPE und RMSE für den 3-Intervall-gewichteten gleitenden Durchschnitt zu berechnen. Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Es werden die gleichen Berechnungen durchgeführt, um Bias, MAD, MSE, MAPE und RMSE für den 6-Intervall-gewichteten gleitenden Durchschnitt zu berechnen. Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Bias, MAD, MSE, MAPE und RMSE werden für die 2-Intervall-, 3-Intervall - und 6-Intervall-gewichteten Bewegungsdurchschnitte wie folgt zusammengefasst. Der 2-Intervall-gewichtete gleitende Durchschnitt ist das Modell, das am ehesten an die tatsächlichen Daten passt, wie es erwartet wird. 160 Excel Master Series Blog Verzeichnis Statistische Themen und Artikel in jedem Thema

No comments:

Post a Comment